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We propose to express corrections to the standard approximations of the exchange-correlation functionals in
the form of multiatom-centered functionals that can be related to the atoms-in-molecules theory of Bader and
a multicenter density expansion. Unlike conventional functionals, the variables of these multicenter functionals
are the positions and identities of the nuclei, which can unambiguously be determined from the topology of the
electronic density. The proposed multicenter correction is used to provide a theoretical basis for the dispersion-
corrected atom-centered potential �DCACP� approach used to improve van der Waals interactions in conven-
tional density functional theory. Convergence to the correct long-range asymptotic behavior of the multicenter
expansion for DCACPs is demonstrated in the test case of the H2 van der Waals dimer.
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Multicenter expansions of classical and quantum fields,
such as densities and wave functions, have been exploited in
many electronic structure theories.1–4 The centers of the ex-
pansion are most commonly chosen to coincide with the po-
sitions of the atoms in the system. A similar approach was
followed by Nagy et al.5 for the derivation of density func-
tional formulas in terms of moments of the electron density.

In this paper, we apply similar techniques to propose a
multiatom-centered expansion for corrections to the approxi-
mate exchange-correlation functionals in density functional
theory �DFT�. In this case, the particular choice for such an
expansion is physically intuitive since deviations from the
homogeneous electron-gas reference are largest at the atoms.
Specifically, the total electronic density of a system can be
regarded as a sum of the atomic densities corrected for the
interatomic interactions.1 Some of the topological properties
of the atomic densities are preserved even upon formation of
molecules and solids: for example, the locations of the den-
sity maxima and the cusps that are uniquely associated with
the positions of the atoms.6–9 In view of this, it is natural to
derive a multicenter-expansion-based scheme for the optimi-
zation of density functionals that are based on the topology
of the total electronic density.

We first introduce the concept of reformulating correc-
tions to the approximate universal density functionals �Eq.
�2�� as a multicenter functional, drawing largely from the
idea of multicenter density expansions.4 Using the atoms-in-
molecules theory of Bader,10 we argue that all quantities re-
quired for the functional, i.e., the positions and the charges of
the nuclei in a system, can be uniquely derived from the
electronic charge density. The approach of atom-centered po-
tentials �ACPs� is briefly recapped before we switch our fo-
cus to one particular category of ACPs, dispersion-corrected
atom-centered potentials �DCACPs�. The convergence of the
multicenter expansion for DCACPs is demonstrated by an
essentially exact reproduction of the asymptotic r−6 behavior
when a sufficiently complete �spherical harmonics and/or
Gaussian functions� basis is employed.

Here, we present the concept of multicenter density func-
tionals. In DFT, the basic variable is the electron density
��r�, a function of three spatial coordinates �and, for spin
polarized systems, the spin�. Given a density, the following
relation,

E��� = F��� +� dr vext�r���r� , �1�

delivers the corresponding energy and, upon minimization,
the ground-state density and energy. F��� is a universal func-
tional which does not depend explicitly on the external po-
tential vext�r�. Even though such a functional exists, its exact
form is still elusive, and many studies have been devoted to
the search for better approximations. One can rewrite the
exact universal functional F��� as the sum of an approximate
form commonly adopted by the DFT community �Fapprox����
and a correction term ��F���� with respect to F���,

F��� = Fapprox��� + �F��� . �2�

Instead of a conventional functional form for �F���, we pro-
pose to utilize a multicenter expansion of the form
�FMC�����R j� j=1

M �, in which R j is defined with respect to site
j with position vector R j. We shall closely follow the argu-
ment presented by Averill and Painter4 who considered the
decomposition of the charge density into a sum of atom-
centered functions. Here, we only consider functionals of the

form �F���=�dr��r��F̃�r� and their nonlocal equivalent

�F���=�dr�dr���r��F̃�r ,r����r��, where the functions

�F̃�r� and �F̃�r ,r�� are expanded in a multicenter fashion
and can also depend �in the most general case� on the elec-
tronic density �.

Using the projection technique pioneered by Boys and

Rajagopal,1 and further refined by Becke2 and Delley,3 �F̃�r�
can be written as a sum of site-j-centered functions Pj,

�F̃�r� 	 

j=1

M

� f̃ j�r� = 

j=1

M

Pj�r j� , �3�

where r j =r−R j.
Pj was originally defined by a set of weight functions � j

also centered at site j,

Pj�r j� = � j�r j��F̃�r� , �4�

where for any r,
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j

� j�r� = 1. �5�

One possible choice for � j can be the homonuclear fuzzy-
cell function of Becke.2 In this scheme, each � j has a value
of unity in the vicinity of its own nucleus but vanishes in a
continuous and well-behaved manner near any other nucleus.
The system is thus divided into fuzzy, overlapping analyti-

cally continuous cells. Applying � j to �F̃�r� produces Pj that
is large in magnitude near site j and approaches zero away
from site j.

An alternative and probably more general way of obtain-
ing multicentered functional corrections is achieved using
the convolution of atom-centered volume functions � j with a

given functional correction �F̃�,

�F̃�r� = 

j=1

M

Pj�r j� = 

j=1

M � dr � j�r j − r��F̃��r� . �6�

This partitioning of the overall functional correction �F̃�r�
into different atomic contributions is simpler to handle than
the one suggested in Eq. �4� and does not require the addi-
tional constraint given in Eq. �5�. Furthermore, this partition-
ing has a straightforward generalization to the nonlocal case,

�F̃�r,r�� = 

j=1

M

Pj�r j,r j��

= 

j=1

M � drdr�� j�r j − r��F̃��r,r��� j�r j� − r�� .

�7�

At this point, it is convenient to carry out a spherical
harmonics expansion about the sites j. The harmonics coef-
ficients,

p�m�rj� =� Y�m�r̂ j�Pj�r j�d� , �8�

determine the approximate representation of Pj,

Pj�r j� 	 

�=0

�max



m=−�

+�

Y�m�r̂ j�p�m�rj� , �9�

where d� is the angular volume element centered at j, and
the accuracy of the expansion is controlled solely by the
cutoff value �max.

In the nonlocal case,

Pj�r j,r j�� 	 

�=0

�max



m=−�

+�



p=0

pmax



q=−p

+p

Y�m�r̂ j�p�m,pq�rj,rj��Ypq
� �r̂ j�� ,

�10�

where �see Appendix�

p�m,pq�rj,rj�� =
4�

2l + 1
�l0�rj�� f̃ lm,pq� �rj,rj���l0�rj�� , �11�

and �l0 and � f̃ lm,pq� are the spherical harmonics coefficients
of the weighting function � and of the functional correction

�F̃�, respectively.
In the following, we will consider the case of an orbital-

dependent multicenter correction. Since the Kohn-Sham or-
bitals are functionals of the electron density, this can be seen
as a natural and potentially advantageous formulation in the
same spirit as optimized effective potentials.11 In addition, it
offers the possibility of linking this development with the
recently introduced DCACP approach,12 which has the fol-
lowing functional form:

�F���i�� = 

i
� � drdr��i�r��


j

Pj�r j,r j����i
��r�� ,

�12�

where i runs through the occupied Kohn-Sham orbitals. This
is the proposed orbital-dependent-functional form we will
use to expand �F��� in Eq. �2�.

Multiatom-center functionals are uniquely defined by the
density � only. The site j in the multicenter scheme is most
commonly �and naturally� chosen to be the location of atom
I in the system. One thus requires knowledge of the positions
�and sometimes the charges� of the nuclei for evaluating
multicenter functionals. To be uniquely defined by the elec-
tron density, these two pieces of information should be de-
fined by � and � only; in other words, the following require-
ments need to be satisfied: �a� the topology of ��r� �in
particular the position of the cusps� uniquely determines the
positions of the multicenter expansion �RI�I=1

M 8,10; �b� for any
given choice of I-centered weight function �I, requirement
�a� determines the projection p�m

I �r�; and �c� a one-to-one
mapping exists between ZI and ��RI�, where ZI is the nuclear
charge at atom I.

Following the atoms-in-molecules theory of Bader,10 the
atomic fragments in molecular systems are determined on
the basis of the topology of the total electron density alone.
The electronic charge density exhibits a cusp at the position
of a nucleus in both the ground and excited states of many-
electron systems.13 This condition can be used to describe
the mapping required in condition �a�.

Regarding requirement �c�, the value of the charge density
at nuclear position ��RI� is much larger than its value at any
other of its extrema except for protons. ��RI� of a free atom
in the Hartree-Fock approximation is roughly proportional to
Z3 for Z�55 �Z is the atomic number� as depicted in Fig.
1.14 On the other hand, values of � at the saddle or bond
critical points between given pairs of nuclei over the range of
chemically significant internuclear separations range be-
tween 0	�	1.0 a.u.,10 of considerably smaller magnitude
than ��RI�. This universal mapping still holds in most chemi-
cal and physical electronic structure approaches, particularly
in those in which the frozen-core approximation is invoked.

Furthermore, Kato’s theorem6 states that
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ZI = −
1

2��r�
���r�

�r



r�RI

, �13�

where the partial derivatives are taken at the nuclei I. DFT
shows that, in principle, knowledge of the ground-state elec-
tron density is sufficient to determine all molecular
properties.7 The cusps of the density thus tell us where the
nuclei are �RI� and what the atomic numbers ZI are. We can
therefore consider both the nuclear charge ZI��� and the
nuclear positions RI��� as functionals of the electronic den-
sity.

By replacing the positions of the multicenter expansion of

�F̃�r ,r�� �Eq. �7�� with the nuclear positions RI, we intro-
duce a density functional dependence through ZI��� and

RI���, leading to �F̃����r ,r��. However, in order to simplify
the notation, in the following, we will drop the explicit den-

sity functional dependency from �F̃ and all their spherical
harmonics components. It is also worth mentioning that,
since the functional derivative of ZI��� and RI��� with re-
spect to ��r� is zero by definition �we do not consider here
alchemical changes�, the calculation of the correction poten-
tial, vxc

c �r�=�F��� /
��r�, only involves the explicit func-

tional derivative of �F���=�dr�dr���r��F̃�r ,r����r�.
In conclusion, given any �even approximate� density of a

many-electron system constructed from a sum of atomic den-
sities �with a correct representation of the cusp. This is best
achieved by either taking the atomic core density or through
a reconstruction of the density at the cusp.15� and optimized
according to any ab initio approach, it is possible to unam-
biguously locate all atomic positions �RI� in the system and
to identify their corresponding physical nature �ZI� on the
basis of the electron-density distribution only. Therefore, any
functional that depends explicitly on the atomic positions
can, in principle, be recast into a density-only �i.e., “univer-
sal”� form.

We have demonstrated that the correction term �F���r��
can be projected into a multiatom-centered functional

�FMC�����R j� j=1
M � �herein referred to as ACF�. This correc-

tion term can, in principle, be derived from theory but this is
almost as difficult as searching for the true universal func-
tional, F���. Alternatively, one can also empirically tune the
ACF against some well-defined penalty functionals to im-
prove the atomic or molecular properties of interest.16 To this
end, we have used an analytic form similar to the one pro-
posed by Goedecker et al.17 in the context of atomic pseudo-
potentials. These atom-centered analytic functions can be
tuned to reach an accuracy that is on par with high-level ab
initio calculations or simply functionals of higher rank for
specific properties. Among others, this approach has been
used, e.g., for generating link atoms to bridge the quantum
and classical fragments in quantum mechanics/molecular
mechanics simulations, designed in such a way that the link
atoms minimally perturb the electronic structure in the
quantum-mechanical region,16 for reproducing the electron
density and derived molecular properties of hybrid functional
quality within BLYP calculations,16 and for improving the
description of dispersion forces in DFT �dispersion-corrected
atom-centered potentials�.12

ACFs employed in the above-mentioned studies are gen-
erally defined as

PI�rI,rI�� = vI
ACF�r,r��

= 

�=0

�max



m=−�

+�

Y�m
I �r̂�p�

I �r�hI��ZI�p�
I �r��Y�m

I� �r̂�� ,

�14�

with the normalized projector,

p�
I �r� �

r� exp�− r2/2�I��ZI�2�
�I��ZI��+3/2 . �15�

hI��ZI� and �I��ZI� are two adjustable atom-dependent pa-
rameters for each angular-momentum channel � that are
uniquely assigned to different atoms in the system according
to the one-to-one mapping between ZI and ��RI� �Fig. 1�.
ACFs can be used as corrections to the approximate DFT
functionals as suggested in Eq. �2�. Therefore, even though
the starting guess for the electron density in a self-consistent-
field optimization may not have any cusps �thus no ACF
corrections�, after the first iteration, cusps at the atomic po-
sitions arise from the contribution of the approximate func-
tional, Fapprox���, with the consequent switching on of the
ACF correction.

As an example, we will concentrate here on one particular
category of ACFs that we have recently introduced to treat
the lack of dispersion forces in DFT but the following argu-
ment is generally applicable. To gain insight into the physical
meaning of the DCACP correction �Eq. �14��, we use the
Funk-Hecke theorem �FHT� �Ref. 18� to derive the spherical
harmonics coefficients of the atom-centered weighting func-

tions, �I and �F̃��r ,r��, in Eq. �7�.
The spherical harmonics expansion in Eq. �14� corre-

sponds to a double convolution of the two-point quantity

�F̃� with the one-point weighting functions �I as in Eq. �7�.
According to the FHT �see Appendix�, comparing Eq. �14�
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FIG. 1. Value of spherically averaged single-particle density at
nucleus �symbol 
, ��RI� in a.u.� as a function of the atomic num-
ber Z for all neutral atoms with Z�55 in the Hartree-Fock approxi-
mation. Data are taken from Ref. 14. The line is a cubic fit through
the data �y=0.7x3�.
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with Eq. �A6�, we find the following relation between the

spherical harmonics coefficients of �I, �F̃�, and vI
ACF:

p�
I �r�hI�p�

I �r�� =
4�

2� + 1
��0

I �r�� f̃�0� �r,r����0
I �r�� , �16�

and, according to Eq. �A6�, we can assign

��0
I �r� = �hI�

exp�− r2/2�I��ZI�2�
�I��ZI��+3/2 , �17�

� f̃�0� �r,r�� =
2� + 1

4�
r�r��, �18�

where we collect all atom-dependent terms into the definition
of ��0

I .
According to the definition of the functional correction in

Eqs. �7� and �12�, the atom-centered DCACP corrections are
therefore generated by a weighted sum of “multiple mo-
ments,”

q�m
i =�2� + 1

4�
� drY�m�r̂�r��i�r� . �19�

In the DCACP approach, we have opted for a single-
channel ��=3� expansion19 since we are mostly interested in
the region around the van der Waals �vdW� minimum and
less so in the long-range limit. In general, it gives excellent
performance and transferability for vdW interactions up to
�5 Å but some deviations from the asymptotic dipolar
nature20–23 are observed at long range. One channel is there-
fore sufficient to describe equilibrium properties very well
and can be extended to several channels if required.

Since both the spherical harmonics �angular� and Gauss-
ian function �radial� expansions adopted here form a com-
plete set of orthonormal functions, they can, in principle,
reproduce any function with arbitrary accuracy. It should
thus be straightforward to achieve the r−6 behavior by includ-
ing more projectors in the expansion. To demonstrate this,
the H2 dimer is chosen as an example; hydrogen is devoid of
any nonlocal components in its atomic pseudopotential, and
we are allowed to assign l as low as zero to the DCACP
without any interference with the underlying atomic pseudo-
potential �the very different length scale also ensures mini-
mal interference between the two�. All DFT calculations
have been carried out using the CPMD code,24 the BLYP
functional,25,26 Goedecker-Teter-Hutter pseudopotentials,17

and a plane-wave cutoff of 100 Ry in an isolated cell with
dimensions 10
10
20 Å3. Our implementation of �F���
in the CPMD code24 follows exactly the one for the nonlocal
part of the separable nonlocal pseudopotentials.27 �As in hy-
brid functionals, this introduces nonlocality in the DFT po-
tential, which is no longer multiplicative. Improvements of
the theory and its implementation can be achieved following
the development of the optimized potential method, in which
the DFT potential is derived using a chain rule for functional
differentiation.� The hydrogen DCACP has been calibrated
against a full configuration-interaction �CI� reference of H2
dimer aligned in parallel,28 using the scheme proposed in
Ref. 12. The results are presented in Fig. 2. The “tail” of the

CI reference is fitted to a function of the form ar−6 and the
two deviate slightly from each other, especially in the long-
range limit, indicating the influence of higher order terms
such as r−8. In addition, a drastic improvement in the r−6

description is observed when the expansion of DCACPs in-
cludes more than one �. Essentially, exact r−6 behavior can
be reached by as few as two projectors. This clearly demon-
strates that the DCACP approach is capable of reproducing
the physically correct r−6 asymptotic limit even though this
functional form is not explicitly imposed and that essentially
arbitrarily accuracy with respect to high-level reference cal-
culations can be obtained by using such a correction term.

To summarize, we have drawn on the atoms-in-molecules
theory and the multicenter potential approach to show that it
is possible to expand corrections to the approximated univer-
sal density functional in terms of multiatom-centered contri-
butions. This expansion is unambiguously determined by the
topology of the electron density: the cusp condition deter-
mines the centers of the expansion �the nuclear positions, RI�
and ��RI� determines the nature �ZI� of the atom at that po-
sition. In this sense, this expansion can be considered univer-
sal, i.e., it depends solely on the electronic density. The final
assessment of the multicenter functionals is obtained through
a fitting procedure of the ZI-dependent parameters used in
PI�rI ,rI��. This procedure, in principle, is carried out only
once for each element, and it involves tuning the parameters
so that the desired accuracy on any chosen molecular prop-
erties can be optimally reproduced. For the multicenter cor-
rection aimed to cure the lack of dispersion forces in
DFT-GGA, we have shown that, with the example of �H2�2,
it is possible to achieve the correct r−6 asymptotic tail in the
interaction energy curve by including a sufficient number of
components �as few as two� in the expansion in Eq. �14�.

APPENDIX

We first introduce the decomposition of the spherical part
of a one-point function ��r� and a two-point function
F�r ,r��,

��r� = 

l=0

�



m=−l

l

�lm�r�Ylm�r̂� , �A1�
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FIG. 2. Interaction energy of �H2�2 aligned in parallel computed
with DCACPs having multiple projectors.
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F�r,r�� = 

l=0

�



m=−l

l



p=0

�



q=−l

p

f lm,pq�r,r��Ylm
� �r̂�Ypq�r̂�� .

�A2�

The convolution of these two functions in the first argument
has the following expansion in spherical harmonics:

F � ��r,r�� = 

l=0

�



m=−l

l



p=0

�



q=−l

p

�F � ��lm,pq�r,r��Ylm
� �r̂�Ypq�r̂�� ,

�A3�

with, according to the Funk-Hecke theorem,18 coefficients

�F � ��lm,pq�r,r�� =� 4�

2l + 1
�l0�r�f lm,pq�r,r�� . �A4�

For the double convolution in Eq. �7� we finally get

�� � F � ��lm,pq�r,r�� =
4�

2l + 1
�l0�r�f lm,pq�r,r���l0�r�� .

�A5�

In the case in which the matrix elements f lm,pq are diagonal-
izable, the spherical harmonics coefficients for the double
convolution in Eq. �A5� become

�� � F � ��lm�r,r�� =
4�

2l + 1
�l0�r�f lm�r,r���l0�r�� , �A6�

and therefore

� � F � ��r,r�� = 

l=0

�



m=−l

l

�� � F � ��lm�r,r��Ylm
� �r̂�Ylm�r̂�� .

�A7�
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